Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128314, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007008

RESUMO

Nowadays, there is a growing interest in multifunctional therapeutic agents as valuable tools to improve and expand the applicability field of traditional bioactive compounds. In this context, the synthesis and main characteristics of dextran-coated iron oxide nanoparticles (IONP-Dex) loaded with both an antioxidant, protocatechuic acid (PCA), and an antibiotic, ceftazidime (CAZ) or levofloxacin (LEV) are herein reported for the first time, with emphasis on the potentiation effect of PCA on drugs activity. All nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, differential scanning calorimetry and dynamic light scattering. As evidenced by DPPH method, IONP-Dex loaded with PCA and LEV had similar antioxidant activity like those with PCA only, but higher than PCA and CAZ loaded ones. A synergy of action between PCA and each antibiotic co-loaded on IONP-Dex has been highlighted by an enhanced activity against reference bacterial strains, such as S. aureus and E. coli after 40 min of incubation. It was concluded that PCA, which is the main cause of the antioxidative properties of loaded nanoparticles, further improves the antimicrobial activity of IONP-Dex nanoparticles when was co-loaded with CAZ or LEV antibiotics. All constructs also showed a good biocompatibility with normal human dermal fibroblasts.


Assuntos
Dextranos , Hidroxibenzoatos , Nanopartículas , Humanos , Dextranos/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Ferro
2.
Polymers (Basel) ; 15(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376315

RESUMO

New hydrogels nanocomposites, based on iminoboronate hydrogels and ZnO nanoparticles (ZnO-NPs), were obtained and characterised in order to develop a new class of disinfectants able to fight the nosocomial infections produced by duodenoscopes investigation procedures. The formation of the imine linkages between chitosan and the aldehyde was demonstrated using NMR and FTIR spectroscopy, while the supramolecular architecture of the developed systems was evaluated via wide-angle X-ray diffraction and polarised optical microscopy. The morphological characterisation of the systems via scanning electron microscopy revealed the highly porous structure of the materials, in which no ZnO agglomeration could be observed, indicating the very fine and homogenous encapsulation of the nanoparticles into the hydrogels. The newly synthetised hydrogels nanocomposites was proven to have synergistic antimicrobial properties, being very efficient as disinfectants against reference strains as: Enterococcus faecalis, Klebsiella pneumoniae, and Candida albicans.

3.
Life (Basel) ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888098

RESUMO

The aim of this study is to evaluate the efficiency of protocatechuic acid (PCA) in enhancing the commonly used drugs used to fight against nosocomial infection. These drugs are represented by routinely used antibiotics, synthetic chemotherapeutic agents with an antimicrobial spectrum, and antifungals. Three concentrations of PCA were added to 12 types of commercial disks used for antibiotic and antifungal susceptibility and tested against bacterial and yeast strains represented by Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The results proved that PCA increased up to 50% of the antibacterial activity, especially that of levofloxacin against Staphylococcus aureus and Escherichia coli. These formulations will lead to new drug design ideas containing a smaller amount of antibiotics with the same effectiveness.

4.
Nanomaterials (Basel) ; 9(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690040

RESUMO

BACKGROUND: Cerium oxide nanoparticles present the mimetic activity of superoxide dismutase, being able to inactivate the excess of reactive oxygen species (ROS) correlated with a large number of pathologies, such as stents restenosis and the occurrence of genetic mutations that can cause cancer. This study presents the synthesis and biological characterisation of nanoconjugates based on nanoparticles of iron oxide interconnected with cerium oxide conjugates. METHODS: The synthesis of magnetite-nanoceria nanoconjugates has been done in several stages, where the key to the process is the coating of nanoparticles with polyethyleneimine and its chemical activation-reticulation with glutaraldehyde. The nanoconjugates are characterised by several techniques, and the antioxidant activity was evaluated in vitro and in vivo. RESULTS: Iron oxide nanoparticles interconnected with cerium oxide nanoparticles were obtained, having an average diameter of 8 nm. Nanoconjugates prove to possess superparamagnetic properties and the saturation magnetisation varies with the addition of diamagnetic components in the system, remaining within the limits of biomedical applications. In vitro free-radical scavenging properties of nanoceria are improved after the coating of nanoparticles with polyethylenimine and conjugation with magnetite nanoparticles. In vivo studies reveal increased antioxidant activity in all organs and fluids collected from mice, which demonstrates the ability of the nanoconjugates to reduce oxidative stress. CONCLUSION: Nanoconjugates possess magnetic properties, being able to scavenge free radicals, reducing the oxidative stress. The combination of the two properties mentioned above makes them excellent candidates for theranostic applications.

5.
Molecules ; 24(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242689

RESUMO

OBJECTIVES: Duodenoscopes have been widely used for both diagnostic and therapeutic endoscopic retrograde cholangiopancreatography (ERCP) procedures, but recently, numerous outbreaks of multidrug-resistant organisms (MDRO) infections have been reported which has led to extensive research for their possible causes. Consequently, the aim of this study is to search for possible duodenoscope surface damages that could provide an alternative and plausible source of infections. MATERIALS AND METHODS: In order to assess both outer and inner surfaces, a duodenoscope was dismantled and samples were taken from the outer resin polymer and from the air/water, elevator, and working (biopsy) channels that were characterized by FTIR, DSC, TGA, AFM, SEM techniques and the antimicrobial activity were tested. RESULTS: Alterations were noticed on both the coating and working channel polymers, with external alterations increasing progressively from the proximal sample to the distal sample near the tip of the scope. However, the results showed that the coating surface was still efficient against bacterial adhesion. Changes in surface texture and also morphological changes were shown. CONCLUSIONS: The study describes the impact of routine procedural use and reprocessing cycles on the duodenoscope, showing that these may possibly make it susceptible to bacterial contamination and MDRO biofilm formation due to difficult reprocessing of the altered surfaces.


Assuntos
Infecção Hospitalar/etiologia , Duodenoscópios/efeitos adversos , Biofilmes , Varredura Diferencial de Calorimetria , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Infecção Hospitalar/epidemiologia , Desinfecção , Duodenoscópios/microbiologia , Microbiologia Ambiental , Reutilização de Equipamento , Humanos , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
6.
Mater Sci Eng C Mater Biol Appl ; 94: 608-618, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423746

RESUMO

Core-shell magnetic nanoparticle synthesis offers the opportunity to engineering their physical properties for specific applications when the intrinsic magnetic properties can be associated with other interesting ones. The purpose of this study was to design, synthesize, and characterize core-shell magnetic nanoparticles that mimic superoxide dismutase activity offering the possibility of guidance and therapeutic action. We proposed, for the first time, the synthesis and characterization of the nanocarriers comprised of magnetite nanoparticles functionalized with branched polyethyleneimine of low molecular weight (1.8 kDa) permitting the loading of the protocatechuic acid or its inclusion complex with anionic sulfobutylether-ß-cyclodextrin for active drug delivery, in order to combine the useful properties of the magnetite and the protocatechuic acid antioxidant effect. NMR and DSC analyses confirmed the formation of the inclusion complex between sulfobutylether-ß-cyclodextrin and protocatechuic acid, while structural and compositional analyses (FT-IR, TEM, XRD) revealed the synthesis of the multifunctional magnetic systems. Due to the possibility of being formulated as blood system injectable suspensions, antioxidant activity (using DPPH test) and cytotoxicity (using MTS assay on normal human dermal fibroblasts cells) were also measured, showing adequate properties to be used in biomedical applications. Moreover, we proposed a nanocarrier that would be able to load unstable active principles and with very low solubility in biological fluids to increase their biological ability.


Assuntos
Sequestradores de Radicais Livres/química , Nanopartículas de Magnetita/química , Antioxidantes/farmacologia , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Eletroquímica , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidroxibenzoatos/química , Nanopartículas de Magnetita/ultraestrutura , Oxirredução , Polietilenoimina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , beta-Ciclodextrinas/química
7.
Org Biomol Chem ; 13(34): 9005-11, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26171592

RESUMO

We introduce Dynamic Constitutional Frameworks (DCFs), macromolecular structures that efficiently bind and transfect double stranded DNA. DCFs are easily synthesizable adaptive 3D networks consisting of core connection centres reversibly linked via labile imine bonds both to linear polyethyleneglycol (PEG, ∼1500 Da) and to branched polyethyleneimine (bPEI, ∼800 Da). DCFs bind linear and plasmid DNA, forming particulate polyplexes of 40-200 nm in diameter. The polyplexes are stable during gel electrophoresis, well tolerated by cells in culture, and exhibit significant transfection activity. We show that an optimal balance of PEG and bPEI components is important for building DCFs that are non-toxic and exhibit good cellular transfection activity. Our study demonstrates the versatility and effectiveness of DCFs as promising new vectors for DNA delivery.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Polietilenoglicóis/química , Polietilenoimina/química , Sobrevivência Celular , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Peso Molecular , Espectroscopia Fotoeletrônica , Plasmídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...